Detection of methane at 1670-nm band with a hollow-core photonic bandgap fiber

نویسندگان

  • A. M. Cubillas
  • M. Silva-Lopez
  • J. M. Lazaro
  • O. M. Conde
  • M. N. Petrovich
  • J. M. Lopez
چکیده

In recent years, hollow-core photonic bandgap fibers (HC-PBFs) have been demonstrated to be a promising technology for gas sensing. In particular, the long interaction path lengths available with these fibers are especially advantageous for the detection of weakly absorbing gases such as methane. In the near-infrared region, methane has the strongest absorption band, 2ν3, at 1670 nm. However, HC-PBFs were not available until recently in this wavelength range and gas sensing devices based on HC-PBFs were previously made in the weaker band of 1300 nm. In this paper, we report the demonstration of a methane sensor based on a 1670-nm-band HC-PBF. A strong spectral feature, the R(6) manifold (near 1645 nm), was selected for sensing purposes as it shows a good signal-to-noise ratio. This absorption line is comprised of six energy transitions, strongly overlapped at our experimental conditions. For that reason, we applied a multiline algorithm that used information from the six transitions to fit the manifold. The goodness of the fitting was assessed measuring the concentration of different methane samples. With this method, a minimum detectivity of 10 ppmv for the system configuration was estimated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Line Fit Model for the Detection of Methane at ν2 + 2ν3 Band using Hollow-Core Photonic Bandgap Fibres

Hollow-core photonic bandgap fibres (HC-PBFs) have emerged as a novel technology in the field of gas sensing. The long interaction pathlengths achievable with these fibres are especially advantageous for the detection of weakly absorbing gases. In this work, we demonstrate the good performance of a HC-PBF in the detection of the ν(2) + 2ν(3) band of methane, at 1.3 μm. The Q-branch manifold, at...

متن کامل

Gas Sensor Based on Large Hollow-Core Photonic Bandgap Fiber

One concern in using photonic band-gap fiber (PBGF) as a gas sensor is the response time. In this type of the gas sensors, response time is the time required for gas to diffuse into the hollow-core. So considering a large hollow-core PBGF (HC-PBGF), the response time can be significantly reduced. But in the large HC-PBGF, the fundamental issue is the presence of higher order modes (HOMs). Somet...

متن کامل

Gas Sensor Based on Photonic Crystal Fibres in the 2ν3 and ν2 + 2ν3 Vibrational Bands of Methane

In this work, methane detection is performed on the 2ν(3) and ν(2) + 2ν(3) absorption bands in the Near-Infrared (NIR) wavelength region using an all-fibre optical sensor. Hollow-core photonic bandgap fibres (HC-PBFs) are employed as gas cells due to their compactness, good integrability in optical systems and feasibility of long interaction lengths with gases. Sensing in the 2ν(3) band of meth...

متن کامل

Hollow multilayer photonic bandgap fibers for NIR applications.

Here we report the fabrication of hollow-core cylindrical photonic bandgap fibers with fundamental photonic bandgaps at near-infrared wavelengths, from 0.85 to 2.28 microm. In these fibers the photonic bandgaps are created by an all-solid multilayer composite meso-structure having a photonic crystal lattice period as small as 260 nm, individual layers below 75 nm and as many as 35 periods. Thes...

متن کامل

Methane sensing using multiple-coupling gaps in hollow-core photonic bandgap fibers

Gas detection and gas sensing based on hollow core photonic bandgap fiber (HC-PBF) is a very promising technique due to the long interaction light-gas lengths that are achievable. However, long path-lengths also imply higher gas filling times of the hollow fiber and higher response times of the detection systems what can constitute a serious practical inconvenience. In this paper, the high sens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008